Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Autophagy ; 20(2): 416-436, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37733896

RESUMEN

Crizotinib, a small-molecule tyrosine kinase inhibitor targeting ALK, MET and ROS1, is the first-line drug for ALK-positive metastatic non-small cell lung cancer and is associated with severe, sometimes fatal, cases of cardiac failure, which increases the risk of mortality. However, the underlying mechanism remains unclear, which causes the lack of therapeutic strategy. We established in vitro and in vivo models for crizotinib-induced cardiotoxicity and found that crizotinib caused left ventricular dysfunction, myocardial injury and pathological remodeling in mice and induced cardiomyocyte apoptosis and mitochondrial injury. In addition, we found that crizotinib prevented the degradation of MET protein by interrupting autophagosome-lysosome fusion and silence of MET or re-activating macroautophagy/autophagy flux rescued the cardiomyocytes death and mitochondrial injury caused by crizotinib, suggesting that impaired autophagy activity is the key reason for crizotinib-induced cardiotoxicity. We further confirmed that recovering the phosphorylation of PRKAA/AMPK (Ser485/491) by metformin re-activated autophagy flux in cardiomyocytes and metformin rescued crizotinib-induced cardiomyocyte injury and cardiac complications. In summary, we revealed a novel mechanism for crizotinib-induced cardiotoxicity, wherein the crizotinib-impaired autophagy process causes cardiomyocyte death and cardiac injury by inhibiting the degradation of MET protein, demonstrated a new function of impeded autophagosome-lysosome fusion in drugs-induced cardiotoxicity, pointed out the essential role of the phosphorylation of PRKAA (Ser485/491) in autophagosome-lysosome fusion and confirmed metformin as a potential therapeutic strategy for crizotinib-induced cardiotoxicity.Abbreviations and Acronyms: AAV: adeno-associated virus; ACAC/ACC: acetyl-Co A carboxylase; AMP: adenosine monophosphate; AMPK: AMP-activated protein kinase; ATG5: autophagy related 5; ATG7: autophagy related 7; CHX: cycloheximide; CKMB: creatine kinase myocardial band; CQ: chloroquine; c-PARP: cleaved poly (ADP-ribose) polymerase; DAPI: 4'6-diamidino-2-phenylindole; EF: ejection fraction; FOXO: forkhead box O; FS: fractional shortening; GSEA: gene set enrichment analysis; H&E: hematoxylin and eosin; HF: heart failure; HW: TL: ratio of heart weight to tibia length; IR: ischemia-reperfusion; KEGG: Kyoto encyclopedia of genes and genomes; LAMP2: lysosomal-associated membrane protein 2; LDH: lactate dehydrogenase; MCMs: mouse cardiomyocytes; MMP: mitochondrial membrane potential; mtDNA: mitochondrial DNA; MYH6: myosin, heavy peptide 6, cardiac muscle, alpha; MYH7: myosin, heavy peptide 7, cardiac muscle, beta; NPPA: natriuretic peptide type A; NPPB: natriuretic peptide type B; PI: propidium iodide; PI3K: phosphoinositide 3-kinase; PRKAA/AMPKα: protein kinase AMP-activated catalytic subunit alpha; qPCR: quantitative real-time PCR; SD: standard deviation; SRB: sulforhodamine B; TKI: tyrosine kinase inhibitor; WGA: wheat germ agglutinin.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Metformina , Ratones , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia/genética , Fosforilación , Macroautofagia , Crizotinib/metabolismo , Autofagosomas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Cardiotoxicidad , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Péptidos/metabolismo , Miosinas/metabolismo , Lisosomas/metabolismo , Adenosina Monofosfato , Proteínas Tirosina Quinasas Receptoras/metabolismo
2.
Toxicol Sci ; 196(2): 152-169, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37702017

RESUMEN

The FDA Modernization Act 2.0 has brought nonclinical drug evaluation into a new era. In vitro models are widely used and play an important role in modern drug development and evaluation, including early candidate drug screening and preclinical drug efficacy and toxicity assessment. Driven by regulatory steering and facilitated by well-defined physiology, novel in vitro skin models are emerging rapidly, becoming the most advanced area in alternative testing research. The revolutionary technologies bring us many in vitro skin models, either laboratory-developed or commercially available, which were all built to emulate the structure of the natural skin to recapitulate the skin's physiological function and particular skin pathology. During the model development, how to achieve balance among complexity, accessibility, capability, and cost-effectiveness remains the core challenge for researchers. This review attempts to introduce the existing in vitro skin models, align them on different dimensions, such as structural complexity, functional maturity, and screening throughput, and provide an update on their current application in various scenarios within the scope of chemical testing and drug development, including testing in genotoxicity, phototoxicity, skin sensitization, corrosion/irritation. Overall, the review will summarize a general strategy for in vitro skin model to enhance future model invention, application, and translation in drug development and evaluation.


Asunto(s)
Dermatitis Fototóxica , Piel , Animales , Evaluación Preclínica de Medicamentos/métodos , Irritantes , Alternativas a las Pruebas en Animales
3.
Adv Sci (Weinh) ; 10(26): e2302002, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37452432

RESUMEN

Nephrotoxicity has become prominent due to the increase in the clinical use of nilotinib, a second-generation BCR-ABL1 inhibitor in the first-line treatment of Philadelphia chromosome-positive chronic myeloid leukemia. To date, the mechanism of nilotinib nephrotoxicity is still unknown, leading to a lack of clinical intervention strategies. Here, it is found that nilotinib could induce glomerular atrophy, renal tubular degeneration, and kidney fibrosis in an animal model. Mechanistically, nilotinib induces intrinsic apoptosis by specifically reducing the level of BCL2 like 1 (Bcl-XL) in both vascular endothelial cells and renal tubular epithelial cells, as well as in vivo. It is confirmed that chloroquine (CQ) intervenes with nilotinib-induced apoptosis and improves mitochondrial integrity, reactive oxygen species accumulation, and DNA damage by reversing the decreased Bcl-XL. The intervention effect is dependent on the alleviation of the nilotinib-induced reduction in ubiquitin specific peptidase 13 (USP13) and does not rely on autophagy inhibition. Additionally, it is found that USP13 abrogates cell apoptosis by preventing excessive ubiquitin-proteasome degradation of Bcl-XL. In conclusion, the research reveals the molecular mechanism of nilotinib's nephrotoxicity, highlighting USP13 as an important regulator of Bcl-XL stability in determining cell fate, and provides CQ analogs as a clinical intervention strategy for nilotinib's nephrotoxicity.


Asunto(s)
Cloroquina , Células Endoteliales , Animales , Cloroquina/toxicidad , Apoptosis , Pirimidinas/farmacología , Proteasas Ubiquitina-Específicas
4.
Expert Opin Pharmacother ; 24(12): 1361-1373, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37278051

RESUMEN

INTRODUCTION: Alectinib is a second-generation, anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor (TKI) for the treatment of ALK+ non-small cell lung cancer (NSCLC) and is able to induce significant and durable CNS responses. However, long-term use of alectinib has been clinically reported to cause some serious and even life-threatening adverse events. There are currently no effective interventions for its adverse events, and this undoubtedly leads to delays in patient treatment and limits its long-term clinical use. AREAS COVERED: Based on the clinical trials conducted so far, we summarize the efficacy and adverse events that occurred, especially those related to cardiovascular disorders, gastrointestinal disorders, hepatobiliary disorders, musculoskeletal and connective tissue disorders, skin and subcutaneous tissue disorders, and respiratory disorders. The factors that may influence alectinib selection are also described. Findings are based on a PubMed literature search of clinical and basic science research papers spanning 1998-2023. EXPERT OPINION: The significant prolongation of patient survival compared with first-generation ALK inhibitor suggests its potential as a first-line treatment for the NSCLC, but the severe adverse events of alectinib limit its long-term clinical use. Future research should focus on the exact mechanisms of these toxicities, how to alleviate the adverse events caused by alectinib clinically, and the development of next-generation drugs with reduced toxicities.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Quinasa de Linfoma Anaplásico , Carbazoles/efectos adversos , Proteínas Tirosina Quinasas Receptoras/uso terapéutico , Inhibidores de Proteínas Quinasas/efectos adversos
5.
Biochem Pharmacol ; 215: 115636, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37290598

RESUMEN

Crizotinib is the first-line drug for advanced non-small cell lung cancer with the abnormal expression of anaplastic lymphoma kinase gene. Severe, life-threatening, or fatal interstitial lung disease/pneumonia has been reported in patients treated with crizotinib. The clinical benefit of crizotinib is limited by its pulmonary toxicity, but the underlying mechanisms have not been adequately studied, and protective strategies are relatively scarce. Here, we established an in vivo mouse model in which crizotinib was continuously administered to C57BL/6 at 100 mg/kg/day for 6 weeks and verified that crizotinib induced interstitial lung disease in vivo, which was consistent with the clinical observations. We further treated BEAS-2B and TC-1 cells, the alveolar epithelial cell lines, with crizotinib and found the increased apoptosis rate. We proved that crizotinib-blocked autophagic flux caused apoptosis of the alveolar epithelial cells and then promoted the recruitment of immune cells, suggesting that limited autophagy activity was the key reason for pulmonary injury and inflammation caused by crizotinib. Subsequently, we found that metformin could reduce the macrophage recruitment and pulmonary fibrosis by recovering the autophagy flux, thereby ameliorating impaired lung function caused by crizotinib. In conclusion, our study revealed the mechanism of crizotinib-induced apoptosis of alveolar epithelial cells and activation of inflammation during the onset of pulmonary toxicity and provided a promising therapeutic strategy for the treatment of crizotinib-induced pulmonary toxicity.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Enfermedades Pulmonares Intersticiales , Neoplasias Pulmonares , Ratones , Animales , Crizotinib/toxicidad , Células Epiteliales Alveolares , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Ratones Endogámicos C57BL , Enfermedades Pulmonares Intersticiales/tratamiento farmacológico , Autofagia , Inflamación/metabolismo , Inhibidores de Proteínas Quinasas/toxicidad
6.
Nat Commun ; 14(1): 2756, 2023 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-37179400

RESUMEN

The hepatotoxicity of regorafenib is one of the most noteworthy concerns for patients, however the mechanism is poorly understood. Hence, there is a lack of effective intervention strategies. Here, by comparing the target with sorafenib, we show that regorafenib-induced liver injury is mainly due to its nontherapeutic target Eph receptor A2 (EphA2). EphA2 deficiency attenuated liver damage and cell apoptosis under regorafenib treatment in male mice. Mechanistically, regorafenib inhibits EphA2 Ser897 phosphorylation and reduces ubiquitination of p53 by altering the intracellular localization of mouse double minute 2 (MDM2) by affecting the extracellular signal-regulated kinase (ERK)/MDM2 axis. Meanwhile, we found that schisandrin C, which can upregulate the phosphorylation of EphA2 at Ser897 also has protective effect against the toxicity in vivo. Collectively, our findings identify the inhibition of EphA2 Ser897 phosphorylation as a key cause of regorafenib-induced hepatotoxicity, and chemical activation of EphA2 Ser897 represents a potential therapeutic strategy to prevent regorafenib-induced hepatotoxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Receptor EphA2 , Masculino , Animales , Ratones , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fosforilación/fisiología , Proteína p53 Supresora de Tumor , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Receptor EphA2/metabolismo
7.
Arch Toxicol ; 97(3): 635-650, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36773078

RESUMEN

The phosphatidylinositol 3-kinase (PI3K) signalling pathway regulates cell survival, proliferation, migration, metabolism and other vital cellular life processes. In addition, activation of the PI3K signalling pathway is important for cancer development. As a result, a variety of PI3K inhibitors have been clinically developed to treat malignancies. Although several PI3K inhibitors have received approval from the Food and Drug Administration (FDA) for significant antitumour activity, frequent and severe adverse effects have greatly limited their clinical application. These toxicities are mostly on-target and immune-mediated; nevertheless, the underlying mechanisms are still unclear. Current management usually involves intervention through symptomatic treatment, with discontinuation if toxicity persists. Therefore, it is necessary to comprehensively understand these adverse events and ensure the clinical safety application of PI3K inhibitors by establishing the most effective management guidelines, appropriate intermittent dosing regimens and new combination administration. Here, the focus is on the development of PI3K inhibitors in cancer therapy, with particular emphasis on isoform-specific PI3K inhibitors. The most common adverse effects of PI3K inhibitors are also covered, as well as potential mechanisms and management approaches.


Asunto(s)
Antineoplásicos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Neoplasias , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas , Inhibidores de las Quinasa Fosfoinosítidos-3/toxicidad , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Neoplasias/inducido químicamente , Transducción de Señal , Antineoplásicos/farmacología
8.
Expert Opin Ther Targets ; 27(1): 71-86, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36735300

RESUMEN

INTRODUCTION: Autophagy is a conserved catabolic process that helps recycle intracellular components to maintain homeostasis. The completion of autophagy requires the synergistic effect of multiple canonical autophagic proteins. Defects in autophagy machinery have been reported to promote diseases, rendering autophagy a bone fide health-modifying agent. However, the clinical implication of canonical pan-autophagic activators or inhibitors has often led to undesirable side effects, making it urgent to find a safer autophagy-related therapeutic target. The discovery of non-canonical autophagic proteins has been found to specifically affect the development of diseases without causing a universal impact on autophagy and has shed light on finding a safer way to utilize autophagy in the therapeutic context. AREAS COVERED: This review summarizes recently discovered non-canonical autophagic proteins, how these proteins influence autophagy, and their potential therapeutic role in the disease due to their interaction with autophagy. EXPERT OPINION: Several therapies have been studied thus far and continued research is needed to identify the potential that non-canonical autophagic proteins have for treating certain diseases. In the meantime, continue to uncover new non-canonical autophagic proteins and examine which are likely to have therapeutic implications.


Asunto(s)
Autofagia , Humanos
9.
Cardiovasc Res ; 119(5): 1250-1264, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36651911

RESUMEN

AIMS: Trastuzumab, the first humanized monoclonal antibody that targets human epidermal growth factor receptor 2 (ERBB2/HER2), is currently used as a first-line treatment for HER2 (+) tumours. However, trastuzumab increases the risk of cardiac complications without affecting myocardial structure, suggesting a distinct mechanism of cardiotoxicity. METHODS AND RESULTS: We used medium from trastuzumab-treated human umbilical vein endothelial cells (HUVECs) to treat CCC-HEH-2 cells, the human embryonic cardiac tissue-derived cell lines, and human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) to assess the crosstalk between vascular endothelial cells (VECs) and cardiomyocytes. Protein mass spectrometry analysis was used to identify the key factors from VECs that regulate the function of cardiomyocytes. We applied RNA-sequencing to clarify the mechanism, by which PTX3 causes cardiac dysfunction. We used an anti-human/rat HER2 (neu) monoclonal antibody to generate a rat model that was used to evaluate the effects of trastuzumab on cardiac structure and function and the rescue effects of lapatinib on trastuzumab-induced cardiac side effects. Medium from trastuzumab-treated HUVECs apparently impaired the contractility of CCC-HEH-2 cells and iPSC-CMs. PTX3 from VECs caused defective cardiomyocyte contractility and cardiac dysfunction in mice, phenocopying trastuzumab treatment. PTX3 affected calcium homoeostasis in cardiomyocytes, which led to defective contractile properties. EGFR/STAT3 signalling in VECs contributed to the increased expression and release of PTX3. Notably, lapatinib, a dual inhibitor of EGFR/HER2, could rescue the cardiac complications caused by trastuzumab by blocking the release of PTX3. CONCLUSION: We identified a distinct mode of cardiotoxicity, wherein the activation of EGFR/STAT3 signalling by trastuzumab in VECs promotes PTX3 excretion, which contributes to the impaired contractility of cardiomyocytes by inhibiting cellular calcium signalling. We confirmed that lapatinib could be a feasible preventive agent against trastuzumab-induced cardiac complications and provided the rationale for the combined application of lapatinib and trastuzumab in cancer therapy.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Cardiopatías , Células Madre Pluripotentes Inducidas , Humanos , Ratones , Ratas , Animales , Femenino , Trastuzumab/toxicidad , Trastuzumab/metabolismo , Lapatinib/efectos adversos , Lapatinib/metabolismo , Cardiotoxicidad/metabolismo , Cardiotoxicidad/patología , Células Endoteliales/metabolismo , Calcio/metabolismo , Quinazolinas/efectos adversos , Células Madre Pluripotentes Inducidas/metabolismo , Receptor ErbB-2/metabolismo , Anticuerpos Monoclonales/efectos adversos , Cardiopatías/inducido químicamente , Cardiopatías/prevención & control , Cardiopatías/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Antineoplásicos/toxicidad
10.
Toxicol Lett ; 373: 22-32, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36375637

RESUMEN

Dasatinib, a second-generation BCR-ABL inhibitor, is currently used as first-line treatment for patients with chronic myeloid leukemia. However, dasatinib treatment increases the risk of severe cutaneous toxicity, which limits its long-term safe use in clinic. The underlying mechanism for dasatinib-induced cutaneous toxicity has not been clarified. In this study, we tested the toxicity of dasatinib on human immortal keratinocyte line (HaCaT) and normal human epidermal keratinocytes (NHEK). We found that dasatinib directly caused cytotoxicity on keratinocytes, which could be the explanation of the clinical characteristic of pathology. Mechanistically, dasatinib impaired mitophagy by downregulating HMGB1 protein level in keratinocytes, which led to the accumulation of dysfunctional mitochondria. Mitochondria-derived ROS caused DNA damage and cell apoptosis. More importantly, we confirmed that overexpression of HMGB1 could reverse dasatinib-induced keratinocyte apoptosis, and preliminarily explored the intervention effect of saikosaponin A, which could increase HMGB1 expression, on cutaneous toxicity caused by dasatinib. Collectively, our study revealed that dasatinib induced keratinocyte apoptosis via inhibiting HMGB1-mediated mitophagy and saikosaponin A could be a viable strategy for prevention of dasatinib-induced cutaneous toxicity.


Asunto(s)
Apoptosis , Dasatinib , Humanos , Apoptosis/efectos de los fármacos , Dasatinib/toxicidad , Proteína HMGB1/antagonistas & inhibidores , Proteína HMGB1/efectos de los fármacos , Proteína HMGB1/metabolismo , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Mitofagia/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología
11.
Biochem Pharmacol ; 208: 115382, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36528067

RESUMEN

Acute respiratory distress syndrome (ARDS) is characterized by noncardiogenic pulmonary edema. It has a high mortality rate and lacks effective pharmacotherapy. With the outbreak of COVID-19 worldwide, the mortality of ARDS has increased correspondingly, which makes it urgent to find effective targets and strategies for the treatment of ARDS. Recent clinical trials of Janus kinase (JAK) inhibitors in treating COVID-19-induced ARDS have shown a positive outcome, which makes the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway a potential therapeutic target for treating ARDS. Here, we review the complex cause of ARDS, the molecular JAK/STAT pathway involved in ARDS pathology, and the progress that has been made in strategies targeting JAK/STAT to treat ARDS. Specifically, JAK/STAT signaling directly participates in the progression of ARDS or colludes with other pathways to aggravate ARDS. We summarize JAK and STAT inhibitors with ARDS treatment benefits, including inhibitors in clinical trials and preclinical studies and natural products, and discuss the side effects of the current JAK inhibitors to reveal future trends in the design of JAK inhibitors, which will help to develop effective treatment strategies for ARDS in the future.


Asunto(s)
COVID-19 , Quinasas Janus , Síndrome de Dificultad Respiratoria , Factores de Transcripción STAT , Humanos , COVID-19/genética , Inhibidores de las Cinasas Janus/farmacología , Quinasas Janus/genética , Quinasas Janus/metabolismo , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/genética , Transducción de Señal , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo
12.
Biochem Pharmacol ; 201: 115105, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35617997

RESUMEN

The application of lapatinib, a widely used dual inhibitor of human epidermal growth factor receptor 1 (EGFR/ERBB1) and 2 (HER2/ERBB2), has been seriously limited due to cutaneous toxicity. However, the specific mechanism of lapatinib-induced cutaneous toxicity has not been clarified, leading to the lack of an effective strategy to improve clinical safety. Here, we found that lapatinib could induce mitochondrial dysfunction, lead to DNA damage and ultimately cause apoptosis of keratinocytes. In addition, we found that lapatinib could induce an aberrant immune response and promote the release of inflammatory factors in vitro and in vivo. Mechanistically, downregulated expression of the DNA repair protein HMGB1 played a critical role in these toxic reaction processes. Overexpression of HMGB1 inhibited keratinocyte apoptosis and inflammatory reactions. Therefore, restoring HMGB1 expression might be an effective remedy against lapatinib-induced cutaneous toxicity. Finally, we found that saikosaponin A could significantly rescue the reduced HMGB1 transcription, which could alleviate lapatinib-induced DNA damage, inhibit keratinocyte apoptosis and further prevent the toxicity of lapatinib in mice. Collectively, our study might bring new hope to clinicians and tumor patients and shed new light on the prevention of cutaneous adverse drug reactions induced by EGFR inhibitors.


Asunto(s)
Antineoplásicos , Proteína HMGB1 , Neoplasias , Animales , Antineoplásicos/toxicidad , Apoptosis , Línea Celular Tumoral , Proteína HMGB1/genética , Humanos , Lapatinib/toxicidad , Ratones , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinas/toxicidad , Receptor ErbB-2/metabolismo
13.
Bioorg Chem ; 121: 105673, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35217375

RESUMEN

Fibroblast growth factor receptor 4 (FGFR4) together with co-receptors modulate the activation of downstream proteins that regulate fundamental processes, and elevated FGFR4 activity is associated with Hepatocellular Carcinoma (HCC). Hence, FGFR4 is a promising therapeutic target for HCC. Based on BLU9931, we designed and synthesized a series of phenylquinazoline derivatives as novel inhibitors of FGFR4 through the covalent reversible strategy. Among them, a novel compound (C3) showed FGFR4 and cell proliferation inhibitory activity. Cellular mechanism studies demonstrated that compound C3 induced apoptosis via the FGFR4 signaling pathway blockage. Further mechanism study showed that C3 has the reversible covalent binding capacity, could be used as a reference for the development of novel FGFR4 covalent reversible inhibitors.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Quinazolinas/farmacología , Quinazolinas/uso terapéutico , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/química , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismo
14.
Autophagy ; 18(5): 1152-1173, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34432562

RESUMEN

Excessive macroautophagy/autophagy is one of the causes of cardiomyocyte death induced by cardiovascular diseases or cancer therapy, yet the underlying mechanism remains unknown. We and other groups previously reported that autophagy might contribute to cardiomyocyte death caused by sunitinib, a tumor angiogenesis inhibitor that is widely used in clinic, which may help to understand the mechanism of autophagy-induced cardiomyocyte death. Here, we found that sunitinib-induced autophagy leads to apoptosis of cardiomyocyte and cardiac dysfunction as the cardiomyocyte-specific Atg7-/+ heterozygous mice are resistant to sunitinib. Sunitinib-induced maladaptive autophagy selectively degrades the cardiomyocyte survival mediator CCN2 (cellular communication network factor 2) through the TOLLIP (toll interacting protein)-mediated endosome-related pathway and cardiomyocyte-specific knockdown of Ccn2 through adeno-associated virus serotype 9 (AAV9) mimics sunitinib-induced cardiac dysfunction in vivo, suggesting that the autophagic degradation of CCN2 is one of the causes of sunitinib-induced cardiotoxicity and death of cardiomyocytes. Remarkably, deletion of Hmgb1 (high mobility group box 1) inhibited sunitinib-induced cardiomyocyte autophagy and apoptosis, and the HMGB1-specific inhibitor glycyrrhizic acid (GA) significantly mitigated sunitinib-induced autophagy, cardiomyocyte death and cardiotoxicity. Our study reveals a novel target protein of autophagic degradation in the regulation of cardiomyocyte death and highlights the pharmacological inhibitor of HMGB1 as an attractive approach for improving the safety of sunitinib-based cancer therapy.


Asunto(s)
Cardiotoxicidad , Factor de Crecimiento del Tejido Conjuntivo , Proteína HMGB1 , Cardiopatías , Sunitinib , Animales , Apoptosis , Autofagia , Cardiotoxicidad/patología , Factor de Crecimiento del Tejido Conjuntivo/genética , Proteína HMGB1/metabolismo , Cardiopatías/inducido químicamente , Cardiopatías/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Sunitinib/farmacología
15.
Ann Transl Med ; 10(24): 1337, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36660682

RESUMEN

Background: Anlotinib, a vascular endothelial growth factor receptor (VEGFR) inhibitor, has been widely used in advanced lung cancer patients, but the intrinsic mechanism of cancer cell elimination is not fully disclosed. In this study, we reported that anlotinib suppressed lung adenocarcinoma (LUAD) growth through inhibiting fatty acid synthase (FASN)-mediated lipid metabolism. Methods: To investigate the underlying mechanisms of anlotinib, an A549 cell line-derived xenograft model was constructed and a proteomics technique was employed to screen potential markers. Gas chromatography-mass spectrometry (GC-MS) profiling of medium-long chain fatty acid and neutral lipid droplet fluorescence staining were employed to detect lipid metabolism in cancer cells. Subsequently, the effects of anlotinib on FASN expression were determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot. Short hairpin RNA (shRNA) knockdown of FASN was used to assess the role of FASN in the antitumor effect of anlotinib. A patient-derived xenograft (PDX) model was established to validate the efficacy of anlotinib in the patient and IHC staining of FASN was examined. Results: Our data revealed that anlotinib significantly decreased the expression of proteins related to lipid metabolism. GC-MS profiling of medium-long chain fatty acid and neutral lipid droplet fluorescence staining validated that anlotinib could disturb the fatty acid metabolism in cancer cells, especially de novo lipogenesis. Mechanically, the messenger RNA (mRNA) and protein of FASN were down-regulated by anlotinib in A549 cells and FASN knockdown could diminish the antitumor effect of anlotinib in vitro. Remarkable tumor shrinkage by anlotinib was further shown in a patient with multiple-line treatment failure, and FASN reduction was evidenced in the corresponding patient-derived xenograft (PDX) model. Conclusions: Anlotinib could inhibit the growth of LUAD through FASN-mediated lipid metabolism. Our findings provide new insights into the antitumor mechanism of anlotinib in lung adenocarcinoma.

16.
Expert Opin Drug Metab Toxicol ; 17(11): 1311-1325, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34743659

RESUMEN

INTRODUCTION: By 1 January 2021, the FDA has approved a total of 62 small-molecule kinase inhibitors (SMKIs). The increasing clinical use of small-molecule kinase inhibitors has led to some side effects, the most common of which is cutaneous toxicity, as reflected by approximately 90% (57 of 62) of the FDA-approved SMKIs have reported treatment-related cutaneous toxicities. Since these cutaneous toxicities may have a crucial influence on the emotional, physical and psychosocial health of the patients, it is of great importance for doctors, patients, oncologists and interrelated researchers to be aware of the cutaneous side effects of these drugs in order to make the diagnosis accurate and the treatment appropriate. AREAS COVERED: This review aims to summarize the potential cutaneous toxicities and the frequency of occurrence of FDA-approved 62 SMKIs, and provide a succinct overview of the potential mechanisms of certain cutaneous toxicities. The literature review was performed based on PubMed database and FDA official website. EXPERT OPINION: It is significant to determine the risk factors for SMKI-induced cutaneous toxicity. The mechanisms underlying SMKI-induced cutaneous toxicities remain unclear at present. Future research should focus on the mechanisms of SMKI-induced cutaneous toxicities to find out mechanistically driven therapies.


Asunto(s)
Inhibidores de Proteínas Quinasas , Enfermedades de la Piel , Aprobación de Drogas , Humanos , Inhibidores de Proteínas Quinasas/efectos adversos , Enfermedades de la Piel/inducido químicamente , Estados Unidos , United States Food and Drug Administration
17.
Biomed Pharmacother ; 144: 112297, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34649218

RESUMEN

High incidence of cutaneous toxicity ranging from 29.2% to 71.2% has been reported during clinical use of vandetanib, which is a multi-target kinase inhibitor indicated for the treatment of unresectable medullary thyroid carcinoma. The cutaneous toxicity of vandetanib has limited its clinical benefits, but the underlying mechanisms and protective strategies are not well studied. Hence, we firstly established an in vivo model by continuously administrating vandetanib at 55 mg/kg/day to C57BL/6 for 21 days and verified that vandetanib could induce skin rash in vivo, which was consistent with the clinical study. We further cultured HaCaT and NHEK cells, the immortalized or primary human keratinocyte line, and investigated vandetanib (0-10 µM, 0-24 h)-caused alteration in cellular survival and death processes. The western blot showed that the expression level of apoptotic-related protein, c-PARP, c-Caspase 3 and Bax were increased, while the anti-apoptotic protein Bcl2 and MCL1 level were decreased. Meanwhile, vandetanib downregulated mitochondrial membrane potential which in turn caused the release of Cytochrome C, excessive production of reactive oxygen species and DNA damage. Furthermore, we found that 5 µM bisdemethoxycurcumin partially rescued vandetanib-induced mitochondria pathway-dependent keratinocyte apoptosis via activation of autophagy in vivo and in vitro, thereby ameliorated cutaneous toxicity. Conclusively, our study revealed the mechanisms of vandetanib-induced apoptosis in keratinocytes during the occurrence of cutaneous toxicity, and suggested bisdemethoxycurcumin as a potential protective drug. This work provided a potentially promising therapeutic strategy for the treatment of vandetanib-induced cutaneous toxicity.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Diarilheptanoides/farmacología , Queratinocitos/efectos de los fármacos , Enfermedades de la Piel/prevención & control , Piel/efectos de los fármacos , Animales , Antineoplásicos , Proteínas Reguladoras de la Apoptosis/metabolismo , Daño del ADN , Modelos Animales de Enfermedad , Células HaCaT , Humanos , Queratinocitos/metabolismo , Queratinocitos/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Piperidinas , Inhibidores de Proteínas Quinasas , Quinazolinas , Especies Reactivas de Oxígeno/metabolismo , Piel/metabolismo , Piel/patología , Enfermedades de la Piel/inducido químicamente , Enfermedades de la Piel/metabolismo , Enfermedades de la Piel/patología
18.
Biomed Pharmacother ; 143: 112115, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34488081

RESUMEN

Renal fibrosis is a failed wound-healing process of the kidney tissue after chronic, sustained injury, which is a common pathway and pathological marker of virtually every type of chronic kidney disease (CKD), regardless of cause. However, there is a lack of effective treatment specifically targeting against renal fibrosis per se to date. The main pathological feature of renal fibrosis is the massive activation and proliferation of renal fibroblasts and the excessive synthesis and secretion of extracellular matrix (ECM) deposited in the renal interstitium, leading to structural damage, impairment of renal function, and eventually end-stage renal disease. In this review, we summarize recent advancements regarding the participation and interaction of many types of kidney residents and infiltrated cells during renal fibrosis, attempt to comprehensively discuss the mechanism of renal fibrosis from the cellular level and conclude by highlighting novel therapeutic targets and approaches for development of new treatments for patients with renal fibrosis.


Asunto(s)
Matriz Extracelular/metabolismo , Enfermedades Renales/metabolismo , Riñón/metabolismo , Animales , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/patología , Fibrosis , Humanos , Riñón/efectos de los fármacos , Riñón/patología , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/patología , Terapia Molecular Dirigida , Fármacos Renales/uso terapéutico , Transducción de Señal
19.
J Med Chem ; 64(16): 12163-12180, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34375113

RESUMEN

Rash is one of the primary dose-limiting toxicities of Akt (protein kinase B) inhibitors in clinical trials. Here, we demonstrate the inhibition of Akt2 isozyme may be a driver for keratinocyte apoptosis, which promotes us to search for new selective Akt inhibitors with an improved cutaneous safety property. According to our previous research, compound 2 is selected for further optimization for overcoming the disadvantages of compound 1, including high Akt2 inhibition and high toxicity against HaCaT keratinocytes. The dihedral angle-based design and molecular dynamics simulation lead to the identification of Hu7691 (B5) that achieves a 24-fold selectivity between Akt1 and Akt2. Hu7691 exhibits low activity in inducing HaCaT apoptosis, promising kinase selectivity, and excellent anticancer cell proliferation potencies. Based on the superior results of safety property, pharmacokinetic profile, and in vivo efficacy, the National Medical Products Administration (NMPA) approved the investigational new drug (IND) application of Hu7691.


Asunto(s)
Benzamidas/uso terapéutico , Exantema/prevención & control , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Pirazoles/uso terapéutico , Animales , Benzamidas/química , Benzamidas/metabolismo , Benzamidas/toxicidad , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Perros , Femenino , Células HEK293 , Humanos , Queratinocitos/efectos de los fármacos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Neoplasias/complicaciones , Unión Proteica , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/toxicidad , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pirazoles/química , Pirazoles/metabolismo , Pirazoles/toxicidad , Ratas Sprague-Dawley , Relación Estructura-Actividad
20.
Expert Rev Clin Pharmacol ; 14(4): 445-456, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33618586

RESUMEN

Introduction: Nilotinib is a second-generation tyrosine kinase inhibitor (TKI) targeting BCR/ABL, which is used for the first-line treatment of newly diagnosed chronic myeloid leukemia (CML) patients and the second-line treatment of most CML patients who are resistant or intolerant to prior therapy that includes imatinib. In addition to common adverse reactions, long-term use of nilotinib shows some toxicities that are different from those of occurring during other BCR/ABL TKI treatments, such as cardiovascular toxicity. It is life-threatening, which would affect not only the choice of initial treatment of CML patients but also the safety of long-term medication.Areas covered: Through searching literature and reports from PubMed and clinical trials, here we review a profile of the adverse effects induced by nilotinib. We also discuss the potential molecular toxicological mechanisms and clinical management, which may provide strategies to prevent or intervene the toxicity associated with nilotinib.Expert opinion: Severe adverse effects associated with nilotinib limit its long-term clinical application. However, the exact mechanisms underlying these toxicities remain unclear. Future research should focus on the developing strategies to reduce the toxicities of nilotinib as well as to avoid similar toxicity in the development of new drugs.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/administración & dosificación , Pirimidinas/administración & dosificación , Desarrollo de Medicamentos , Resistencia a Antineoplásicos , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Humanos , Mesilato de Imatinib/administración & dosificación , Mesilato de Imatinib/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/efectos adversos , Pirimidinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...